INNOVATION • DEFENSE
NONPROLIFERATION • ENVIRONMENT

We make the world safer.

H Canyon and Accelerated Basin De-inventory (ABD) Update

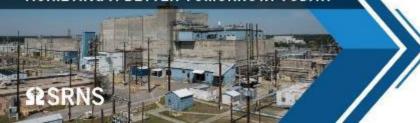
Tara Armstead

Environmental Management Operations Mission Planning Manager

Agenda

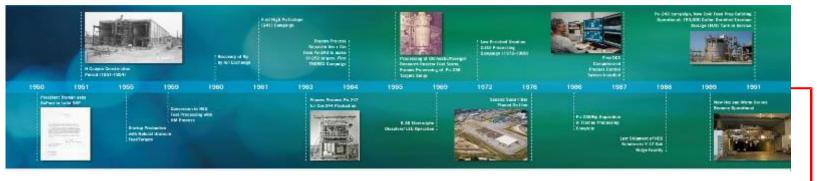
- Purpose
 - Update the CAB on the progress of H Canyon ABD Mission
- Refresher on the ABD Mission
- Progress to date

H Canyon – A National Asset

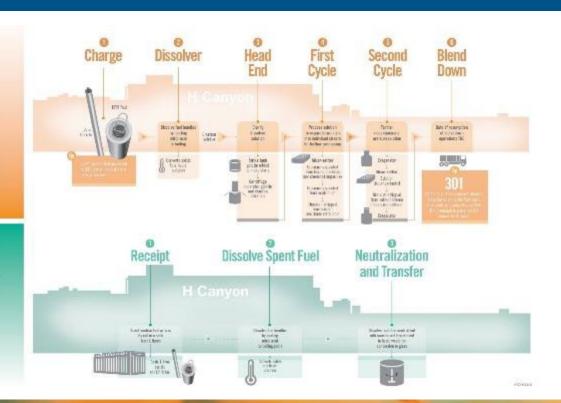


- Only remaining productionscale, radiochemical separations facility in the United States
 - Spent Nuclear Fuel processing
 - Actinide, mainly uranium, recovery

ACHIEVING A BETTER TOMORROW. TODAY.

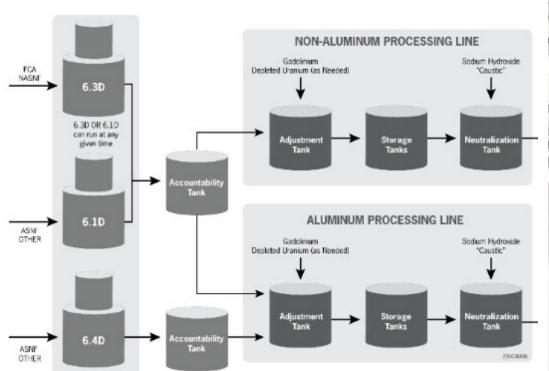


Mission Timeline

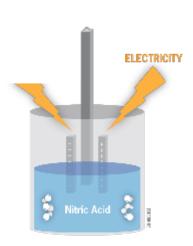


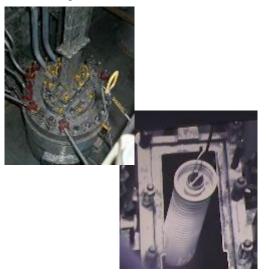
Change to the ABD Mission

Highly Enriched Uranium Process Operations

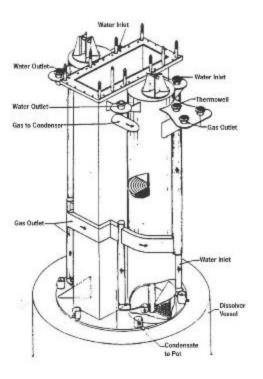

> ABD Spent Nuclear Fuel Disposition

Inside H Canyon - ABD Process Flow

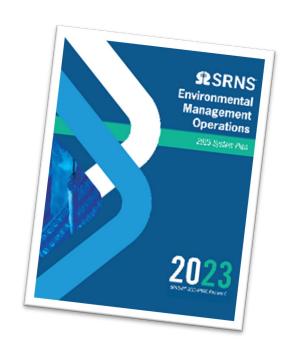




Dissolving – The Heart of the ABD Mission



- Crane removed the lid from the dissolver.
- Bundles are then lowered into dissolver by crane
- Chemistry converts solid Spent Nuclear Fuel to a liquid



Since Starting ABD – Established a ten-year Plan

- Created a ten-year, executable processing plan that is integrated with Liquid Waste
 - Used downstream limits to set processing priorities
 - Categorized the inventory by dissolution characteristics
 - Ranked inventory groups by readiness to process
 - Developed mathematical model to perform mass balances in L Area, H Canyon, and Liquid Waste
 - Allows user to input annual, group specific dissolver batches
 - Outputs H Canyon availability requirements, key processing metrics, and projections against limits
 - Generated scenarios by varying rankings of groups

In Three Years of ABD

Dissolved 1 MT uranium

- Over 300 SNF items
- Approximately, 11% of the fissile able to be processed through H Canyon
- Sent 0.5 MT of Spent Nuclear Fuel to Liquid Waste for conversion to a safe waste form
 - Championed increased fissile loading in vitrified glass, improving efficiency and reducing the number of canisters produced
 - Championed crediting gadolinium, a more efficient neutron absorber than manganese, in Liquid Waste to reduce the number of canisters produced
- Re-established the electrolytic dissolver
 - Not Operated since 1980
- Completed the FCA Mission ahead of schedule
 - Actively preparing to transfer approximately 322 kg of Plutonium to Liquid Waste ahead of schedule

- Performed \$22.6M worth of Infrastructure Improvements to ensure reliable, safe operations continue
 - Roofs, ventilation equipment, crane upgrades
- Prepared for the future
 - Expanded the Aluminum flowsheet to be able to process more material
 - Developed seven new flowsheets
 - Stood up the Non-Aluminum Spent Nuclear Fuel program, which we will start after FCA
 - Developed a new aluminum canister for a-typical shaped fuels

The Future of the Mission

Fast Critical Assembly (FCA)

- Integrated H and K Area mission
- Pu/Stainless Steel
- Uses electrolytic dissolver
 - Last operated in 1980

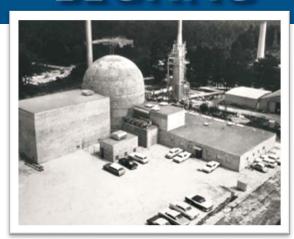
Non-Aluminum Spent Nuclear Fuel (NASNF)

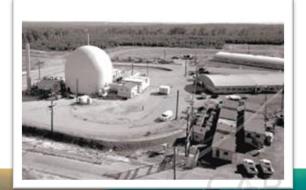
- Integrated H and L Area mission
- Fuel cladding other than aluminum
- May require re-bundling in L Area
- Will use the electrolytic dissolver

High-Assay Low Enriched Uranium (HALEU)

- H Area Outside Facilities
- Blend down of existing uranium
- Ships to an off-site vendor
- Last performed in 2011

2024 2026 2028


Non-Aluminum Spent Nuclear Fuel

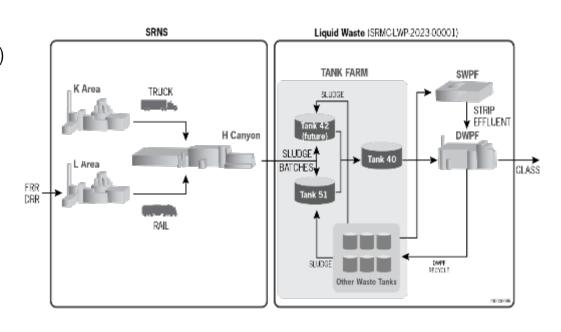

PSRNS

- Non-Aluminum Spent Nuclear Fuel represents roughly 10% (by item) of the ABD mission scope but is a high risk due to disposition challenges.
 - Consists of a variety of shapes, sizes, cladding, fuel composition, and integrity conditions
- Start-up processing Campaign 1
 - Lowest risk to H Canyon and L Basin
 - 20.5 dissolutions
 - 3 MT 238 U; 100 kg 235 U
 - ~20 months of processing

Fuel Cladding

Conclusion

Accelerated Basin De-inventory (



- H/L Mission integrated with Liquid Waste (LW)
- Spent Nuclear Fuel (uranium)
- Duration: FY34
- 1 MT uranium Dissolved to date
- 0.5 MT discharged to liquid waste

Fast Critical Assembly

- NNSA Funded
- Plutonium stainless steel
- H/K Mission integrated with LW
- Duration: FY25 (early finish)
- 17 Batch of 17 complete
- Plans to discharge to LW in Fall (early disposition)

INNOVATION • DEFENSE
NONPROLIFERATION • ENVIRONMENT

SRIS

Savannah River Nuclear Solutions
We make the world safer.

